题目内容
如图,ABCD是边长为a的正方形,以A为圆心,AD为半径的圆弧与以CD为直径的半圆交于另一点P,过P作⊙A的切线分别交BC、CD于M、N两点,则
=______.
PM |
PN |
如图,连接AN、DP、AP.
∵AP=AD,
∴△APD是等腰三角形;
又∵MN是⊙A的切线,AD⊥DN,
∴∠PAN=∠DAN;
∴AN⊥PD;
而点A圆心,N在连心线上,
∴点N是圆心,
∴ND=NC=
;
∵MN是⊙A的切线,AB⊥BM,
∴BM=PM;
同理,DN=PN;
∴在直角三角形MNC中,(PM+PN)2=CM2+CN2,即(BM+
)2=(a-BM)2+(
)2,
解得,BM=
,
∴
=
=
=
;
故答案是:
.
∵AP=AD,
∴△APD是等腰三角形;
又∵MN是⊙A的切线,AD⊥DN,
∴∠PAN=∠DAN;
∴AN⊥PD;
而点A圆心,N在连心线上,
∴点N是圆心,
∴ND=NC=
a |
2 |
∵MN是⊙A的切线,AB⊥BM,
∴BM=PM;
同理,DN=PN;
∴在直角三角形MNC中,(PM+PN)2=CM2+CN2,即(BM+
a |
2 |
a |
2 |
解得,BM=
a |
3 |
∴
PM |
PN |
BM |
DN |
| ||
|
2 |
3 |
故答案是:
2 |
3 |
练习册系列答案
相关题目