题目内容
【题目】如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.
【答案】
【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.
解:过P作PH⊥OY于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2()=2(EH+EO)=2OH,
∴当P在点B处时,OH的值最大,
此时,OC=OA=1,AC==BC,CH=,
∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.
故答案为5.
练习册系列答案
相关题目