题目内容
【题目】已知:如图,在菱形ABCD中, BE⊥AD于点E,延长AD至F,使DF=AE,连接CF.
(1)判断四边形EBCF的形状,并证明;
(2)若AF=9,CF=3,求CD的长.
【答案】(1)四边形EBCF是矩形,证明见解析;(2)CD =5
【解析】
(1)由菱形的性质证得EF=BC,由此证明四边形EBCF是平行四边形.,再利用BE⊥AD即可证得四边形EBCF是矩形;
(2)设CD=x,根据菱形的性质及矩形的性质得到DF=9-x,再利用勾股定理求出答案.
(1)四边形EBCF是矩形
证明:∵四边形ABCD菱形,
∴AD=BC,AD∥BC.
又∵DF=AE,
∴DF+DE=AE+DE,
即:EF = AD.
∴ EF = BC.
∴四边形EBCF是平行四边形.
又∵BE⊥AD,
∴ ∠BEF=90°.
∴四边形EBCF是矩形.
(2) ∵ 四边形ABCD菱形,
∴ AD=CD.
∵ 四边形EBCF是矩形,
∴ ∠F=90°.
∵AF=9,CF=3,
∴设CD=x, 则DF=9-x,
∴ ,
解得:
∴CD =5.
练习册系列答案
相关题目