题目内容
【题目】正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____.
【答案】或
【解析】
分两种情况进行分析,①当BF如图位置时,②当BF为BG位置时;根据相似三角形的性质即可求得BM的长.
如图,当BF如图位置时,
∵AB=AB,∠BAF=∠ABE=90°,AE=BF,
∴△ABE≌△BAF(HL),
∴∠ABM=∠BAM,
∴AM=BM,AF=BE=3,
∵AB=4,BE=3,
∴AE= ,
过点M作MS⊥AB,由等腰三角形的性质知,点S是AB的中点,BS=2,SM是△ABE的中位线,
∴BM=AE=×5=,
当BF为BG位置时,易得Rt△BCG≌Rt△ABE,
∴BG=AE=5,∠AEB=∠BGC,
∴△BHE∽△BCG,
∴BH:BC=BE:BG,
∴BH=.
故答案是:或.
练习册系列答案
相关题目