题目内容
【题目】已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,
求:(1)AB的长为________;
(2)S△ABC=________.
【答案】 4 2+2
【解析】试题分析:(1)过点A作AD⊥BC,根据题意可得CD=AD,再根据勾股定理可求得AD的长,最后根据含30°的直角三角形的性质求解即可;
(2)在Rt△ABD中,得用勾股定理求得BD长,从而得到BC长,再利用三角形的面积公式计算即可得.
试题解析:(1)过点A作AD⊥BC于点D,则∠ADC=∠ADB=90°,
∵∠C=45°,∴∠DAC=90°-∠C=45°,∴∠C=∠DAC,∴AD=CD,
∵AC2=AD2+CD2,AC=,∴AD=CD=2,
∵∠ADB=90°,∠B=30°,∴AB=2AD=4,
故答案为:4;
(2)在Rt△ABD中,由勾股定理得:BD==2,
∴BC=BD+CD=2+2,
∴S△ABC= =2+2,
故答案为:2+2.
练习册系列答案
相关题目