题目内容
【题目】如图,在ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD= ______ °时,四边形BECD是矩形.
【答案】(1)证明见解析;(2)100
【解析】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,∵∠OEB=∠ODC,∠BOE=∠COD,BO=CO,∴△BOE≌△COD(AAS);
∴OE=OD,∴四边形BECD是平行四边形;
(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:
∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;
故答案为:100.
练习册系列答案
相关题目
【题目】我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品.现将从中挑选的50件参赛作品的成绩(单位:分)统计如下:
等级 | 成绩(用m表示) | 频数 | 频率 |
A | 90≤m≤100 | x | 0.08 |
B | 80≤m<90 | 34 | y |
C | m<80 | 12 | 0.24 |
合计 | 50 | 1 |
请根据上表提供的信息,解答下列问题:
(1)表中x的值为 , y的值为;(直接填写结果)
(2)将本次参赛作品获得A等级的学生依次用A1、A2、A3…表示.现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到学生A1和A2的概率为 . (直接填写结果)