题目内容
【题目】如图,在中,,,、分别在、上,连接、交于点,且.
(1)如图1,求证:.
(2)如图2,是的中点,试探讨与的位置关系.
(3)如图3,、分别是、的中点,若,,求的面积.
【答案】(1)见解析;(2)AE⊥CF,理由见解析;(3).
【解析】
(1)直接判断出△ACE≌△BCD即可得出结论;
(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;
(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.
解:(1)在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴∠CAE=∠CBD;
(2)如图2,记AE与CF的交点为M,
在Rt△BCD中,点F是BD的中点,
∴CF=BF,
∴∠BCF=∠CBF,
由(1)知,∠CAE=∠CBD,
∴∠BCF=∠CAE,
∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,
∴∠AMC=90°,
∴AE⊥CF;
(3)如图3,记AE与CF的交点为M,
∵AC=2 ,
∴BC=AC=2,
∵CE=1,
∴CD=CE=1,
在Rt△BCD中,根据勾股定理得,BD==3,
∵点F是BD中点,
∴CF=DF= ,
同理:EG=,
连接EF,过点F作FH⊥BC,
∵∠ACB=90°,点F是BD的中点,
∴FH=,
∴S△CEF=CEFH=×1×=,
由(2)知,AE⊥CF,
∴S△CEF=CFME=×ME=ME,
∴ME=,
∴ME=,
∴GM=EG-ME=,
∴S△CFG=CFGM=××.
练习册系列答案
相关题目