题目内容
【题目】如图,一块四边形土地,其中,,,,,求这块土地的面积.
【答案】2400cm2
【解析】
延长CA、DB交于点P,利用含30度角的直角三角形在Rt△CDP中勾股定理可以求出PD,在Rt△PAB中可以求出PA,四边形的面积S四边形ACDB=S△CDP-S△ABP,就可以求得.
解:延长CA、DB交于点P
∵∠ABD=120°,AB⊥AC,BD⊥CD.
∴∠ACD=60°,∠ABP=60°,
∴∠CPD=30°,∠APB=30°,
∴CD=PC,AB=PB,
∵,,
∴PC=100cm,PB=60cm,
∴PD=cm,PA=cm,
∴S四边形ACDB=S△CDP-S△ABP
=×50×150-×30×90
=2400
答:这块土地的面积为2400cm2.
练习册系列答案
相关题目