题目内容
【题目】已知AB是⊙O的直径,⊙O过BC的中点D,且DE垂直AC于E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若AB=13,BC=10,求DE的长
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】试题分析:(1)连结AD,如图,由圆周角定理得到∠ADB=90°,则AD⊥BC,加上BD=CD,即AD垂直平分BC,所以AB=AC;
(2)连结OD,如图,先证明OD为△ABC的中位线,根据三角形中位线性质得OD∥AC,而DE⊥AC,所以OD⊥DE,于是根据切线的判定定理可得DE是⊙O的切线;
(3)易得BD=DC=BC=5,AC=AB=13,由勾股定理得到AD=12,再用面积法求出DE的长.
试题解析:解:(1)连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∴D为BC的中点,∴BD=CD,∴AB=AC;
(2)连结OD,如图,∵OA=OB,DB=DC,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;
(3)BD=DC= BC=5,AC=AB=13,由勾股定理得:AD=12,在Rt△DAC中, AD*DC=AC*DE,∴DE=.
练习册系列答案
相关题目