题目内容
【题目】如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3═An﹣1An=1,分别过点A1、A2、A3、…、An作x轴的垂线,交反比例函数y= (x>0)的图象于点B1、B2、B3、…、Bn , 过点B2作B2P1⊥A1B1于点P1 , 过点B3作B3P2⊥A2B2于点P2 , …,若记△B1P1B2的面积为S1 , △B2P2B3的面积为S2 , …,△BnPnBn+1的面积为Sn , 则S1+S2+…+S2017= .
【答案】
【解析】解:根据题意可知:点B1(1,2)、B2(2,1)、B3(3, )、…、Bn(n, ), ∴B1P1=2﹣1=1,B2P2=1﹣ = ,B3P3= ﹣ = ,…,BnPn= ﹣ = ,
∴Sn= AnAn+1BnPn= ,
∴S1+S2+…+S2017= + + +…+ =1﹣ + ﹣ + ﹣ +…+ ﹣ =1﹣ = .
所以答案是: .
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高.
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
【题目】小明用下面的方法求出方程2 ﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程 | 换元法得新方程 | 解新方程 | 检验 | 求原方程的解 |
2 ﹣3=0 | 令 =t,则2t﹣3=0 | t= | t= >0 | = ,所以x= |
x﹣2 +1=0 | ||||
x+2+ =0 |