题目内容

【题目】如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.

(1)求抛物线的解析式.
(2)设点P为抛物线对称轴上的一个动点.
①如图①,若点P为抛物线的顶点,求△PBC的面积.
②是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.

【答案】
(1)

解:∵抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),

,解得

∴抛物线解析式为y=x2﹣2x﹣3


(2)

解:①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴P(1,4),且C(0,﹣3),

设直线BC解析式为y=kx+m,则有 ,解得

∴直线BC解析式为y=x﹣3,

设对称轴交BC于点E,如图1,

则E(1,﹣2),

∴PE=﹣2﹣(﹣4)=2,

∴SPBC= PEOB= ×3×2=3;

②设P(1,t),由①可知E(1,﹣2),

∴PE=|t+2|,

∴SPBC= OBPE= |t+2|,

|t+2|=6,解得t=2或t=﹣6,

∴P点坐标为(1,2)或(1,﹣6),

即存在满足条件的点P,其坐标为(1,2)或(1,﹣6)


【解析】(1)把A、B两点坐标代入抛物线解析式,可求得b、c的值,可求得抛物线解析式;(2)①由抛物线解析式可求得P、C的坐标,可求得直线BC解析式,设对称轴交直线BC于点E,则可求得E点坐标,可求得PE的长,则可求得△PBC的面积;②设P(1,t),则可用t表示出△PBC的面积,可得到t的方程,则可求得P点坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网