题目内容
【题目】计算下面各题
(1)计算:| ﹣2|+20150﹣( )+3tan30°;
(2)解不等式组: ,并将不等式组的解集在所给数轴上表示出来.
【答案】
(1)解:原式=2﹣ +1﹣3+3
=0
(2)解:
解不等式①得:x≤4,
解不等式②得:x<2,
原不等式组的解集为x<2,
不等式组的解集在数轴上表示如下:
【解析】(1)根据绝对值、零指数幂、负整数指数幂、特殊角的三角函数值分别求出每部分的值,再代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.
【考点精析】本题主要考查了零指数幂法则和不等式的解集在数轴上的表示的相关知识点,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈才能正确解答此题.
【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 | 频数 | 频率 |
一等奖 | 10 | 0.05 |
二等奖 | 20 | 0.10 |
三等奖 | 30 | b |
优胜奖 | a | 0.30 |
鼓励奖 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a= , b= ,
(2)补全频数分布直方图;
(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
【题目】某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
甲 | 乙 | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(毛利润=(售价 进价)×销售量)
(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?