题目内容

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60


(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

【答案】
(1)解:设y与x之间的函数解析式为y=kx+b,

即y与x之间的函数表达式是y=﹣2x+200;


(2)解:由题意可得,

W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,

即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;


(3)解:∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,

∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,

当x=70时,W取得最大值,此时W=1800,

答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.


【解析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网