题目内容
【题目】某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.
(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?
(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).
【答案】(1)售价应不高于15元.(2)m的值为40.
【解析】
试题分析:(1)设售价应为x元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可;
(2)先求出10月份的进价,再根据等量关系:10月份利润达到3388元,列出方程求解即可.
试题解析:(1)设售价应为x元,依题意有
1160-≥1100,
解得x≤15.
答:售价应不高于15元.
(2)10月份的进价:10(1+20%)=12(元),
由题意得:
1100(1+m%)[15(1-m%)-12]=3388,
设m%=t,化简得50t2-25t+2=0,
解得:t1=,t2=,
所以m1=40,m2=10,
因为m>10,
所以m=40.
答:m的值为40.
练习册系列答案
相关题目