题目内容
【题目】阅读下面材料:
在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;
在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;
在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3
在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|
回答下列问题:
(1)数轴上表示﹣2和﹣5的两点之间的距离是_____;
数轴上表示数x和3的两点之间的距离表示为_____;
数轴上表示数_____和_____的两点之间的距离表示为|x+2|,;
(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:
①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:_____.
②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=_____.
【答案】 3 |x﹣3| x ﹣2 5 ﹣3或4
【解析】试题分析:(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;
(2)①先化简绝对值,然后合并同类项即可;
②分为和两种情况讨论.
试题解析:(1)数轴上表示2和5的两点之间的距离=|2(5)|=3;
数轴上表示数x和3的两点之间的距离=|x3|;
数轴上表示数x和2的两点之间的距离表示为|x+2|;
(2)①当时,|x+2|+|x3|=x+2+3x=5;
②当x>3时,x3+x+2=7,
解得:x=4,
当x<2时,3xx2=7.
解得x=3.
∴x=3或x=4.
故答案为:(1)3;|x3|;x;2;(2)5;3或4.
【题目】在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:
摸球的次数s | 150 | 200 | 500 | 900 | 1000 | 1200 |
摸到白球的频数n | 51 | 64 | 156 | 275 | 303 | 361 |
摸到白球的频率 | 0.34 | 0.32 | 0.312 | 0.306 | 0303 | 0.301 |
(1)请估计:当次数s很大时,摸到白球的频率将会接近 ;假如你去摸一次,你摸到白球的概率是 (精确到0.1).
(2)试估算口袋中红球有多少只?
(3)解决了上面的问题后请你从统计与概率方面谈一条启示.