题目内容
【题目】O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.
(1)写出a、b的值;
(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;
(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?
【答案】(1)a=20,b=﹣10;(2)20+;(3)1秒、11秒或13秒后,C、D两点相距5个单位长度
【解析】
(1)利用绝对值及偶次方的非负性,可求出a,b的值;
(2)由点A,P表示的数可找出点M表示的数,再结合点B表示的数可求出点M、B之间的距离;
(3)当0≤t≤时,点C表示的数为3t,当<t≤时,点C表示的数为20﹣3(t﹣)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤及<t≤,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.
解:(1)∵(a﹣20)2+|b+10|=0,
∴a﹣20=0,b+10=0,
∴a=20,b=﹣10.
(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.
∴点M表示的数为.
又∵点B表示的数为﹣10,
∴BM=﹣(﹣10)=20+.
(3)当0≤t≤时,点C表示的数为3t;
当<t≤时,点C表示的数为:20﹣3(t﹣)=40﹣3t;
当0≤t≤5时,点D表示的数为﹣2t;
当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.
当0≤t≤5时,CD=3t﹣(﹣2t)=5,
解得:t=1;
当5<t≤时,CD=3t﹣(2t﹣20)=5,
解得:t=﹣15(舍去);
当<t≤时,CD=|40﹣3t﹣(2t﹣20)|=5,
即60﹣5t=5或60﹣5t=﹣5,
解得:t=11或t=13.
答:1秒、11秒或13秒后,C、D两点相距5个单位长度.