题目内容

【题目】钝角三角形ABC中,∠BAC>90°,AB=AC,ACB=α,过点A的直线lBC边于点D.点E在直线l上,且BC=BE.,点EAD延长线上.

①当α=30°,点D恰好为BC中点时,补全图1直接写出∠BAE= °,

BEA= °;

②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);

【答案】60,30;②∠BEA=α

【解析】

①只要证明AEBC,BCE是等边三角形即可解决问题.②如图2中,延长CAF,使得BF=BC,则BF=BE=BC,连接BF,作BMAFM,BNAEN.

只要证明RtBMFRtBNE,推出∠BEA=F,由BF=BC,推出∠F=C=α,推出∠BEA=α即可.

解:(1)①补全图1,如图所示.

AB=AC,BD=DC,

AEBC,

EB=EC,ADB=90°,

∵∠ABC=30°,

∴∠BAE=60°

BC=BE,

∴△BCE是等边三角形,∠DEB=DEC,

∴∠BEC=60°,BEA=30°

故答案为60,30.

②如图2中,延长CAF,使得BF=BC,则BF=BE=BC,连接BF,作BMAFM,BNAEN.

AB=AC,

∴∠ABC=C=α,

∴∠MAB=2α,∵∠BAN=2α,

∴∠BAM=BAN,

BM=BN,

RtBMFRtBNE中,

RtBMFRtBNE.

∴∠BEA=F,

BF=BC,

∴∠F=C=α,

∴∠BEA=α.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网