题目内容
【题目】如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标,写出符合题意的其中一条抛物线解析式,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?.(本小题只需直接写出答案)
【答案】(1)正方形边长为;(2)m=1,y=;(3)D坐标为(﹣1,3);y=x2+ ;所求的任何抛物线的伴侣正方形个数为偶数.
【解析】
此题较为新颖,特别要注意审题和分析题意,耐心把题读完,知A、B为坐标轴上两点,C、D为函数图象上的两点:(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长,注意思维的严密性.
(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标从而求解.
(3)注意思维的严密性,抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论.
(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
当点A在x轴正半轴、点B在y轴负半轴上时,
∴AO=1,BO=1,
∴正方形ABCD的边长为
当点A在x轴负半轴、点B在y轴正半轴上时,设正方形ABCD的边长为a,得3a=
∴a= ,所以正方形边长为 ;
(2)作DE、CF分别垂直于x、y轴,
知△ADE≌△BAO≌△CBF,此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m
∴OF=BF+OB=2
∴C点坐标为(2﹣m,2)
∴2m=2(2﹣m)
解得m=1,
∴反比例函数的解析式为y= ;
(3)根据题意画出图形,如图所示:
过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
∴△CED≌△DGB≌△AOB≌△AFC,
∵C(3,4),即CF=4,OF=3,
∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,则D坐标为(﹣1,3);设过D与C的抛物线的解析式为:y=ax2+b,
把D和C的坐标代入得: ,
解得 ,
∴满足题意的抛物线的解析式为y=x2+;
同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为y=x2+;y=x2+;y=x2+,所求的任何抛物线的伴侣正方形个数为偶数.
【题目】为了解同学们的身体发育情况,学校体卫办公室对七年级全体学生进行了身高测量(精确到1cm),并从中抽取了部分数据进行统计,请根据尚未完成的频数分布表和频数分布直方图解答下列问题:
频率分布表
分组 | 频数 | 百分比 |
144.5~149.5 | 2 | 4% |
149.5~154.5 | 3 | 6% |
154.5~159.5 | a | 16% |
159.5~164.5 | 17 | 34% |
164.5~169.5 | b | n% |
169.5~174.5 | 5 | 10% |
174.5~179.5 | 3 | 6% |
(1)求a、b、n的值;
(2)补全频数分布直方图;
(3)学校准备从七年级学生中选拔护旗手,要求身高不低于170cm,如果七年级有学生350人,护旗手的候选人大概有多少?