题目内容
【题目】如图,△ABC是等边三角形,点P在△ABC内,PA=2,将PAB绕点A逆时针旋转得到△QAC,则PQ的长等于( )
A. 2
B.
C.
D. 1
【答案】A
【解析】
根据等边三角形的性质推出AC=AB,∠CAB=60°,根据旋转的性质得出△CQA≌△BPA,推出AQ=AP,∠CAQ=∠BAP,求出∠PAQ=60°,得出△APQ是等边三角形,即可求出答案.
解:∵△ABC是等边三角形,
∴AC=AB,∠CAB=60°,
∵将△PAB绕点A逆时针旋转得到△QAC,
∴△CQA≌△BPA,
∴AQ=AP,∠CAQ=∠BAP,
∴∠CAB=∠CAP+∠BAP=∠CAP+∠CAQ=60°,
即∠PAQ=60°,
∴△APQ是等边三角形,
∴QP=PA=2,
故选:A.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目