题目内容
【题目】如图,矩形的对角线相交于点,,.
(1)求证:四边形是菱形;
(2)若,,求矩形的面积.
【答案】(1)见解析;(2)
【解析】
(1)首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论;
(2)由菱形的性质可得OC=OD=DE=2,∠E=∠DOC=60°,可得BD=4,△OCD是等边三角形,可得CD=2,由勾股定理可求BC的长,即可求矩形ABCD的面积.
(1)∵,,
∴四边形是平行四边形,
∵四边形是矩形,
∴,,,
∴,
∴平行四边形是菱形;
(2)∵四边形是菱形,
∴,,
∴,
∵,(已证),
∴是等边三角形,
∴,
∵矩形中,,
∴,
∴矩形的面积:.
练习册系列答案
相关题目
【题目】某公司为一种新型电子产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开支(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所示的函数关系,并且发现y是x的一次函数.
销售单价x(元) | 50 | 60 | 70 | 80 |
销售数量y(万件) | 5.5 | 5 | 4.5 | 4 |
(1)求y与x的函数关系式;
(2)问:当销售单价x为何值时,该公司年利润最大?并求出这个最大值;
【备注:年利润=年销售额﹣总进货价﹣其他开支】
(3)若公司希望年利润不低于60万元,请你帮助该公司确定销售单价的范围.