题目内容

【题目】如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.

(1)求证:BD是⊙O的切线.

(2)若AB=,E是半圆上一动点,连接AE,AD,DE.

填空:

①当的长度是____________时,四边形ABDE是菱形;

②当的长度是____________时,△ADE是直角三角形.

【答案】(1)见解析;(2)①;②π或π.

【解析】

试题分析:(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.

(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CDtan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为: =π;故答案为:

②若∠ADE=90°,则点E与点F重合,此时的长度为: =π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为: =π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网