题目内容
【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=12,DE=5,求△AEF的面积.
【答案】(1)见解析;(2)84.5.
【解析】
(1)由正方形的性质得出AD=AB,∠D=∠ABC=∠ABF=90°,依据“SAS”即可证得;
(2)根据勾股定理求得AE=13,再由旋转的性质得出AE=AF,∠EAF=90°,从而由面积公式得出答案.
解:(1)∵四边形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
而F是CB的延长线上的点,
∴∠ABF=90°,
在△ADE和△ABF中,
∵ ,
∴△ADE≌△ABF(SAS);
(2)∵BC=12,∴AD=12,
在Rt△ADE中,DE=5,AD=12,
∴AE==13,(勾股定理)
∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面积=AE2=×169=84.5.
练习册系列答案
相关题目
【题目】雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
组别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | |
C | 炉烟气排放 | 15% |
D | 其他(滥砍滥伐等) |
请根据统计图表回答下列问题:
(1)本次被调查的市民共有多少人?并求和的值;
(2)请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;
(3)若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.