题目内容

【题目】如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).

(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.

【答案】
(1)

解:在y=ax2+bx+4中,令x=0可得y=4,

∴C(0,4),

∵四边形OABC为矩形,且A(10,0),

∴B(10,4),

把B、D坐标代入抛物线解析式可得 ,解得

∴抛物线解析式为y=﹣ x2+ x+4;


(2)

解:由题意可设P(t,4),则E(t,﹣ t2+ t+4),

∴PB=10﹣t,PE=﹣ t2+ t+4﹣4=﹣ t2+ t,

∵∠BPE=∠COD=90°,∠PBE=∠OCD,

∴△PBE∽△OCD,

= ,即BPOD=COPE,

∴2(10﹣t)=4(﹣ t2+ t),解得t=3或t=10(不合题意,舍去),

∴当t=3时,∠PBE=∠OCD;


(3)

解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,

∴∠CQO+∠AQB=90°,

∵∠CQO+∠OCQ=90°,

∴∠OCQ=∠AQB,

∴Rt△COQ∽Rt△QAB,

= ,即OQAQ=COAB,

设OQ=m,则AQ=10﹣m,

∴m(10﹣m)=4×4,解得m=2或m=8,

①当m=2时,CQ= =2 ,BQ= =4

∴sin∠BCQ= = ,sin∠CBQ= =

∴PM=PCsin∠PCQ= t,PN=PBsin∠CBQ= (10﹣t),

t= (10﹣t),解得t=

②当m=8时,同理可求得t=

∴当四边形PMQN为正方形时,t的值为


【解析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt△BCQ中可求得BQ、CQ,则可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对相似三角形的性质的理解,了解对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网