题目内容

【题目】如图,△ABC中,D为AB上一点.已知△ADC与△DBC的面积比为1:3,且AD=3,AC=6,请求出BD的长度,并完整说明为何∠ACD=∠B的理由.

【答案】解:∵△ADC与△DBC同高,且△ADC与△DBC的面积比为1:3,AD=3,
∴BD=9,
∴AB=12,
∵AC=6,

∵∠A=∠A,
∴△ADC∽△ACB,
∴∠ACD=∠B.
【解析】由于△ADC与△DBC同高,且△ADC与△DBC的面积比为1:3,AD=3,可求出BD=9,推得AB=12,有相似三角形的判定证得△ADC∽△ACB,再由相似三角形的判定可推得结论.本题主要考查了三角形的面积,相似三角形的判定和性质,灵活应用相似三角形的判定和性质是解决问题的关键.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网