题目内容
【题目】为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.
请根据图表中提供的信息,解答下列问题:
(1)图表中m=________,n=________;
(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为________人;
(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.
【答案】(1)16;20;(2)150;(3).
【解析】(1)根据足球的人数和百分比,求出总人数即可解决问题;
(2)利用样本估计总体的思想即可解决问题;
(3)画出树状图,根据概率公式即可求解.
(1)由统计表和扇形统计图可得:
足球的人数为6人,百分比为15%,
∴总人数为6÷15%=40(人),
∴m=40×40%=16(人),
n%=8÷40=20%.
∴n=20.
( 2 )参加羽毛球活动的百分比为:6÷40=15%,
∴该校参加羽毛球活动的人数为:1000×15%=150(人).
答:该校参加羽毛球活动的人数约为150人.
(3)依题可得:
∴从4人中选出两名同学的所有情况有12种,而一男一女的情况有6种,
则P(恰好选到一男一女)=.
【题目】为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.
一、学生睡眠情况分组表(单位:小时)
组别 | 睡眠时间 |
二、学生睡眠情况统计图
根据图表提供的信息,回答下列问题:
(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;
(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?
(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.