题目内容
【题目】已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.
(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;
(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;
(3)在(2)的条件下,若∠AOB=10°,当∠B0C在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.
【答案】(1)∠MON的度数为80°;(2)∠MON的度数为70°或90°;(3)t的值为21.
【解析】
(1)根据角平分线的定义进行角的计算即可;
(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;
(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.
解:(1)因为∠AOD=160°,
OM平分∠AOB,ON平分∠BOD,
所以∠MOB=∠AOB,∠BON=∠BOD,
即∠MON=∠MOB+∠BON
=∠AOB+∠BOD
=(∠AOB+∠BOD)
=∠AOD=80°,
答:∠MON的度数为80°;
(2)因为OM平分∠AOC,ON平分∠BOD,
所以∠MOC=∠AOC,∠BON=∠BOD,
①射线OC在OB左侧时,
如图:
∠MON=∠MOC+∠BON﹣∠BOC
=∠AOC+∠BOD﹣∠BOC
=(∠AOC+∠BOD)﹣∠BOC
=(∠AOD+∠BOC)﹣∠BOC
=×180°﹣20°
=70°;
②射线OC在OB右侧时,
如图:
∠MON=∠MOC+∠BON+∠BOC
=∠AOC+∠BOD+∠BOC
=(∠AOC+∠BOD)+∠BOC
=(∠AOD﹣∠BOC)+∠BOC
=×140°+20°
=90°;
答:∠MON的度数为70°或90°.
(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,
∴根据(2)中的第一种情况,得
∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.
∵射线OM平分∠AOC,
∴∠AOM=∠AOC=t°+15°.
∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,
∴∠BOD=150°﹣2t°.
∵射线ON平分∠BOD,
∴∠DON=∠BOD=75°﹣t°.
又∵∠AOM:∠DON=2:3,
∴(t+15):(75﹣t)=2:3,
解得t=21.
根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.
答:t的值为21.