题目内容
【题目】如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至处,与CE交于点F,若∠B=52°,∠DAE=20°,则的度数为( )
A. 40° B. 36° C. 50° D. 45°
【答案】B
【解析】分析:由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
详解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.
故选B.
练习册系列答案
相关题目