题目内容
【题目】如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.
【答案】当E为BC的中点时,四边形AECD是矩形,理由见解析
【解析】
先由等腰三角形的性质得出AE⊥BC,再证四边形AECD是平行四边形,即可得出四边形AECD是矩形.
解:当E为BC的中点时,四边形AECD是矩形,理由如下:
如图所示:
∵AB=AC,E为BC的中点,
∴AE⊥BC,BE=EC,
∵△ABC平移得到△DEF,
∴BE∥AD,BE=AD,
∴AD∥EC,AD=EC,
∴四边形AECD是平行四边形,
∵AE⊥BC,
∴四边形AECD是矩形.
练习册系列答案
相关题目