题目内容
【题目】 如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
【答案】(1)见解析;(2)
【解析】试题分析:(1)易证,从而可证到即可得到即由即可得到
(2)由可得即可得到从而可证到然后运用相似三角形的性质即可求出的长.
试题解析:(1)∵ ∠APC=∠PAB+∠B,∠APD=∠B,
∴ ∠DPC=∠PAB.
又AB=AC,∴ ∠ABP=∠PCD,
∴ △ABP∽△PCD.
∴=,∴ =,
∴ AC·CD=CP·BP.
(2)∵ PD∥AB,∴ ∠DPC=∠B,∠APD=∠PAB.
∵ ∠APD=∠B,∴ ∠PAB=∠B.
又∠B=∠C,∴ ∠PAB=∠C.
又∠PBA=∠ABC,∴ △PBA∽△ABC.
∴=,∴ BP===.
练习册系列答案
相关题目