题目内容
如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN于C,设AD=x,BC=y,求y与x的函数关系式.
作DF⊥BN交BC于F;
∵AM、BN与⊙O切于点定A、B,
∴AB⊥AM,AB⊥BN.
又∵DF⊥BN,
∴∠A=∠B=∠BFD=90°,
∴四边形ABFD是矩形,
∴BF=AD=xDF=AB=12,
∵BC=y,
∴FC=BC-BF=y-x;
∵DE切⊙O于E,
∴DE=DA=x CE=CB=y,
则DC=DE+CE=x+y,
在Rt△DFC中,
由勾股定理得:(x+y)2=(x-y)2+122,
整理为y=
,
∴y与x的函数关系式是y=
.
∵AM、BN与⊙O切于点定A、B,
∴AB⊥AM,AB⊥BN.
又∵DF⊥BN,
∴∠A=∠B=∠BFD=90°,
∴四边形ABFD是矩形,
∴BF=AD=xDF=AB=12,
∵BC=y,
∴FC=BC-BF=y-x;
∵DE切⊙O于E,
∴DE=DA=x CE=CB=y,
则DC=DE+CE=x+y,
在Rt△DFC中,
由勾股定理得:(x+y)2=(x-y)2+122,
整理为y=
36 |
x |
∴y与x的函数关系式是y=
36 |
x |
练习册系列答案
相关题目