题目内容

【题目】在图书香八桂,阅读圆梦读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目如图,在RtABC中,C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.

1求证:AC是O的切线;

2若OB=10,CD=8,求BE的长.

【答案】1证明过程见解析;212.

【解析】

试题分析:1连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到ODA为直径,即可得证;2由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.

试题解析:1连接OD, BD为ABC平分线, ∴∠1=2, OB=OD, ∴∠1=3, ∴∠2=3,

ODBC, ∵∠C=90° ∴∠ODA=90° 则AC为圆O的切线;

2过O作OGBC, 四边形ODCG为矩形, GC=OD=OB=10,OG=CD=8,

在RtOBG中,利用勾股定理得:BG=6, BC=BG+GC=6+10=16, ODBC,

∴△AOD∽△ABC, =,即= 解得:OA= AB=+10=

连接EF, BF为圆的直径, ∴∠BEF=90° ∴∠BEF=C=90° EFAC,

=,即= 解得:BE=12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网