题目内容
【题目】如图,已知AB是⊙O的直径,点P是弦BC上一动点(不与端点重合),过点P作PE⊥AB于点E,延长EP交于点F,交过点C的切线于点D.
(1)求证:△DCP是等腰三角形;
(2)若OA=6,∠CBA=30°.
①当OE=EB时,求DC的长;
②当的长为多少时,以点B,O,C,F为顶点的四边形是菱形?
【答案】(1)证明见解析(2)①4②当的长为2π时,以点B,O,C,F为顶点的四边形是菱形
【解析】
(1)连接OC,如图1,利用切线的性质得∠OCD=90°,即∠OCB+∠BCD=90°,然后证明∠DPC=∠BCD得到DP=DC,可得结论;
(2)①如图1,连接AC,先计算BC和PB的长,可得PC的长,再证明△PCD为等边三角形,则②先证明△OAC为等边三角形得到∠BOC=120°,连接OF,AC,再利用F是弧BC的中点得到∠BOF=∠COF=60°,则△AOF与△COF均为等边三角形,从而得到AF=AO=OC=CF,于是可判断四边形OACF为菱形,根据弧长公式可得的长.
(1)证明:连接OC,如图1,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
即∠OCB+∠BCD=90°,
∵OB=OC,
∴∠OCB=∠OBC,
∵PE⊥AB,
∴∠B+∠BPE=90°,
而∠BPE=∠DPC,
∴∠OCB+∠DPC=90°,
∴∠DPC=∠BCD,
∴DC=DP,
∴△DCP是等腰三角形;
(2)解:①如图1,连接AC,
∵AB是⊙O的直径,AB=2AO=12,
∴∠ACB=90°,
∵∠ABC=30°,
∴AC=AB=6,
BC=6,
Rt△PEB中,∵OE=BE=3,∠ABC=30°,
∴PE=,PB=2,
∴CP=BC﹣PB=6﹣2=4,
∵∠DCP=∠CPD=∠EPB=60°,
∴△PCD为等边三角形,
∴CD=PC=4;
②当F是弧BC的中点,即弧FB所对的圆周角为60°时,此时的长:=2π,以点B,O,C,F为顶点的四边形是菱形;
理由如下:如图2,连接OF,AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠CBA=30°,
∴∠A=60°,
∴△OAC为等边三角形,
∴∠BOC=120°,
当F是弧BC的中点时,∠BOF=∠COF=60°,
∴△AOF与△COF均为等边三角形,
∴OB=OC=CF=BF,
∴四边形OCFB为菱形,
则当的长为2π时,以点B,O,C,F为顶点的四边形是菱形.
【题目】八年级某班同学为了了解2012年某居委会家庭月均用水情况,随机调查了该居委会部分家庭,并将调查数据进行如下调整:
月均用水量x(t) | 频数(户) | 频率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | a | 0.24 |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | 0.08 |
25<x≤30 | 2 | 0.04 |
请解答以下问题:
(1)频数分布表中a= ,把频数分布直方图补充完整;
(2)求该居委会用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该居委会有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?