题目内容

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.
(1)∵点B与O(0,0)关于x=3对称,
∴点B坐标为(6,0).
将点B坐标代入y=ax2+2x得:
36a+12=0;
∴a=-
1
3

∴抛物线解析式为y=-
1
3
x2+2x
.(2分)
当x=3时,y=-
1
3
×32+2×3=3

∴顶点A坐标为(3,3).(3分)
(说明:可用对称轴为x=-
b
2a
,求a值,用顶点式求顶点A坐标)

(2)设直线AB解析式为y=kx+b.
∵A(3,3),B(6,0),
6k+b=0
3k+b=3

解得
k=-1
b=6

∴y=-x+6.
∵直线lAB且过点O,
∴直线l解析式为y=-x.
∵点P是l上一动点且横坐标为t,
∴点P坐标为(t,-t).(4分)
当P在第四象限时(t>0),
S=S△AOB+S△OBP
=
1
2
×6×3+
1
2
×6×|-t|
=9+3t.
∵0<S≤18,
∴0<9+3t≤18,
∴-3<t≤3.
又∵t>0,
∴0<t≤3.(5分)
当P在第二象限时(t<0),
作PM⊥x轴于M,设对称轴与x轴交点为N,
则S=S梯形ANMP+S△ANB-S△PMO
=
1
2
[3+(-t)]•(3-t)+
1
2
×3×3-
1
2
(-t)(-t)

=
1
2
(t-3)2+
9
2
-
1
2
t2

=-3t+9;
∵0<S≤18,
∴0<-3t+9≤18,
∴-3≤t<3;
又∵t<0,
∴-3≤t<0;(6分)
∴t的取值范围是-3≤t<0或0<t≤3.

(3)存在,点Q坐标为(3,3)或(6,0)或(-3,-9).(9分)
由(2)知t的最大值为3,则P(3,-3);
过O、P作直线m、n垂直于直线l;
∵直线l的解析式为y=-x,
∴直线m的解析式为y=x;
可设直线n的解析式为y=x+h,则有:
3+h=-3,h=-6;
∴直线n:y=x-6;
联立直线m与抛物线的解析式有:
y=x
y=-
1
3
x2+2x

解得
x=0
y=0
x=3
y=3

∴Q1(3,3);
同理可联立直线n与抛物线的解析式,求得Q2(6,0),Q3(-3,-9).
(说明:点Q坐标答对一个给1分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网