题目内容
【题目】问题提出:
如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值
(1)尝试解决:
为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连结CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠
△ ∽△
∴
∴PD=BP
∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
(2)自主探索:
如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则AP+PC的最小值为 .(请在图3中添加相应的辅助线)
(3)拓展延伸:
如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
【答案】(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.
【解析】
(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;
(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=4,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;
(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.
解:
(1)如图1,
连结AD,过点A作AF⊥CB于点F,
∵AP+BP=AP+PD,要使AP+BP最小,
∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,
即:AP+BP最小值为AD,
∵AC=9,AF⊥BC,∠ACB=60°
∴CF=3,AF=;
∴DF=CF﹣CD=3﹣1=2,
∴AD=,
∴AP+BP的最小值为;
故答案为:;
(2)如图2,
在AB上截取BF=2,连接PF,PC,
∵AB=8,PB=4,BF=2,
∴,且∠ABP=∠ABP,
∴△ABP∽△PBF,
∴,
∴PF=AP,
∴AP+PC=PF+PC,
∴当点F,点P,点C三点共线时,AP+PC的值最小,
∴CF=,
∴AP+PC的值最小值为2,
故答案为:2;
(3)如图3,
延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,
∵OC=4,FC=4,
∴FO=8,且OP=4,OA=2,
∴,且∠AOP=∠AOP
∴△AOP∽△POF
∴,
∴PF=2AP
∴2PA+PB=PF+PB,
∴当点F,点P,点B三点共线时,2AP+PB的值最小,
∵∠COD=120°,
∴∠FOM=60°,且FO=8,FM⊥OM
∴OM=4,FM=4,
∴MB=OM+OB=4+3=7
∴FB=,
∴2PA+PB的最小值为.