题目内容
【题目】已知:如图,菱形ABCD,分别延长AB,CB到点F,E,使得BF=BA,BE=BC,连接AE,EF,FC,CA.
(1)求证:四边形AEFC为矩形;
(2)连接DE交AB于点O,如果DE⊥AB,AB=4,求DE的长.
【答案】(1)证明见解析;(2)ED=4..
【解析】
(1)根据菱形的性质以及矩形的判定证明即可;
(2)连接DB,根据菱形的判定和性质以及直角三角形的性质解答即可.
(1)证明:∵BF=BA,BE=BC,
∴四边形AEFC为平行四边形,
∵四边形ABCD为菱形,
∴BA=BC,
∴BE=BF,
∴BA+BF=BC+BE,即AF=EC,
∴四边形AEFC为矩形;
(2)连接DB,
由(1)可知,AD∥EB,且AD=EB,
∴四边形AEBD为平行四边形,
∵DE⊥AB,
∴四边形AEBD为菱形,
∴AE=EB,AB=2AG,ED=2EG,
∵矩形ABCD中,EB=AB,AB=4,
∴AG=2,AE=4,
∴在Rt△AEG中,EG=2,
∴ED=4.
练习册系列答案
相关题目