题目内容

【题目】如图,在Rt△ABC中,∠ABC=90°.AB=BC.点D是线段AB上的一点,连结CD.过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:① = ;②若点D是AB的中点,则AF= AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若 = ,则SABC=9SBDF , 其中正确的结论序号是( )

A.①②
B.③④
C.①②③
D.①②③④

【答案】C
【解析】解:依题意可得BC∥AG,
∴△AFG∽△BFC,

又AB=BC,∴
故结论①正确;
如右图,∵∠1+∠3=90°,∠1+∠4=90°,
∴∠3=∠4.
在△ABG与△BCD中,

∴△ABG≌△BCD(ASA),
∴AG=BD,又BD=AD,
∴AG=AD;
在△AFG与△AFD中,
∴△AFG≌△AFD(SAS)
∵△ABC为等腰直角三角形,∴AC= AB;
∵△AFG≌△AFD,∴AG=AD= AB= BC;
∵△AFG∽△BFC,∴ = ,∴FC=2AF,
∴AF= AC= AB.
故结论②正确;
当B、C、F、D四点在同一个圆上时,
∴∠2=∠ACB
∵∠ABC=90°,AB=BC,
∴∠ACB=∠CAB=45°,
∴∠2=45°,
∴∠CFD=∠AFD=90°,
∴CD是B、C、F、D四点所在圆的直径,
∵BG⊥CD,

∴DF=DB,故③正确;
,∵AG=BD,
,∴ = ,∴AF= AC,∴SABF= SABC;∴SBDF= SABF
∴SBDF= SABC , 即SABC=12SBDF
故结论④错误.
故选C.

【考点精析】关于本题考查的解直角三角形,需要了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网