题目内容
【题目】定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将黄金抛物线y=2x2﹣2x+2沿对称轴向下平移3个单位.
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明.
【答案】(1)如y=x2,y=x2﹣x+1,y=x2+2x+4等(答案不唯一);(2)详见解析;(3)①y=2x2﹣2x﹣1;②符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣,),(,).
【解析】
(1)按照黄金抛物线的定义给a、b、c赋值即可;
(2)将ac=b2代入判别式当中,消去ac,然后对b分等于0和不等于0两种情讨论即可;
(3)①根据“上加下减”写出平移后的抛物线解析式即可;
②根据所给的限制条件,只能画出四种图形,分别写出相应的P点坐标即可;
(1)答:如y=x2,y=x2﹣x+1,y=x2+2x+4等;
(2)依题意得b2=ac,
∴△=b2﹣4ac=b2﹣4b2=﹣3b2,
∴当b=0时,△=0,此时抛物线与x轴有一个公共点,
当b≠0时,△<0,此时抛物线与x轴没有公共点;
(3)
①抛物线y=2x2﹣2x+2向下平移3个单位得到的新抛物线的解析式为y=2x2﹣2x﹣1,
②存在.
如图:
若BQ=AO,过点Q作x轴的平行线,交抛物线于点P,
P点的坐标为:(0,﹣1),(1,﹣1),
此时,△AOB≌△BQP;
若BQ=BO,过点Q作x轴的平行线,交抛物线于点P,
令2x2﹣2x﹣1=,
解得:x=﹣或x=,
∴P点的坐标为:(﹣,),(,).
此时,△AOB≌△PQB;
综上所述,有四个符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣,),(,).
【题目】某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计图(表):
甲队员的成绩统计表
成绩(单位:环) | 7 | 8 | 9 | 10 |
次数(单位:次) | 5 | 1 | 2 | 2 |
(1)在图1中,求“8环”所在扇形的圆心角的度数;
(2)经过整理,得到的分析数据如表,求表中的a、b、c的值.
队员 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | b | 7 | 1 |
(3)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.