题目内容

【题目】关于三角函数有如下的公式:

sin(α+β)=sinαcosβ+cosαsinβ①

cos(α+β)=cosαcosβ﹣sinαsinβ②

tan(α+β)=

利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:

tan105°=tan(45°+60°)==﹣(2+).

根据上面的知识,你可以选择适当的公式解决下面的实际问题:

如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.

【答案】84

【解析】分析:

如图过点DDE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出ABAE的长,即可由CD=BE=AB-AE求得结果了.

详解:

如图过点DDE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,

Rt△ABCRt△ADE

AB=BCtan75°=42tan75°=

AE=

CD=AB﹣AE=(米).

建筑物CD的高为84.

睛:读懂题意,把已知量和未知量转化到Rt△ABCRt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网