题目内容

【题目】定义:若a+b2,则称ab是关于1的平衡数.

1)①3   是关于1的平衡数;②4x   是关于1的平衡数(用含x的代数式表示).

2)若a2x23x2+x)﹣4b2x[3x﹣(4x+x2)﹣2],判断ab是否是关于1的平衡数,并说明理由.

【答案】1)①-1,②x2;(2)不是,见解析

【解析】

1)①根据平衡数的定义,可得3与﹣1是关于1的平衡数,

4xx2是关于1的平衡数;

2)将两式相减得出a+b≠2,根据平衡数的定义,即可进行判断.

解:(1)①∵2-3=(﹣1),

3与﹣1是关于1的平衡数;

②∵

4xx2是关于1的平衡数.

故答案为:﹣1x2

2a2x23x2+x)﹣4=﹣x23x4

b2x[3x﹣(4x+x2)﹣2]x2+3x+2

a+b=(﹣x23x4+x2+3x+2)=﹣2≠2

因此,ab不是关于1的平衡数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网