题目内容
【题目】如图,在正方形ABCD中,∠BAC的平分线交BC边于G,AG的中垂线与CB的延长线交于E,与AB、AC、DC分别交于点M,N,F,下列结论:①tan∠E=,②△AGC≌△EMG,③四边形AMGN是菱形,④S△CFN=S四边形AMGN,其中正确的是______(填序号).
【答案】②③④
【解析】
在正方形ABCD中,∠BAC的平分线交BC边于G,可得∠BAG=∠CAG=∠BAC=22.5°,∠AGB=67.5°,因为AG的中垂线与CB的延长线交于E,可得AM=MG,AN=NG,∠E=22.5°,即可判断①错误,证明AM=AN,可得AM=GM=NG=AN,即四边形AMGN是菱形,可判断③正确;用“角角边”可证明△AGC≌△EMG,可判断②正确;证明意△AMN∽△CFN,可得S△CFN=2S△AMN=S四边形AMGN,可判断④正确.
解:∵在正方形ABCD中,∠BAC的平分线交BC边于G,
∴∠BAG=∠CAG=∠BAC=22.5°,
∵∠ABC=90°,
∴∠AGB=90°-22.5°=67.5°,
∵AG的中垂线与CB的延长线交于E,
∴AM=MG,AN=NG,∠E=90°-∠AGB=22.5°,
∴tan∠E=错误,即①错误;
∵∠AMN=∠ANM=90°-22.5°=67.5°,
∴AM=AN,
∴AM=GM=NG=AN,
∴四边形AMGN是菱形,即③正确;
∵四边形AMGN是菱形,
∴MG∥AC,AB∥NG,
∴∠ACG=∠MGE=45°,∠NGC=∠ABC=90°,
∴GC=GN=GM,
∵∠GAC=∠E=22.5°,
∴△AGC≌△EMG(AAS),即②正确;
由题意△AMN∽△CFN,
∴,
∴S△CFN=2S△AMN=S四边形AMGN,即④正确.
故答案为:②③④.
练习册系列答案
相关题目