题目内容
【题目】如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1) CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
【答案】(1)平行;(2)115°.
【解析】
(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;
(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°.
解:(1)CD与EF平行.理由如下:
CD⊥AB,EF⊥AB,
∴∠CDB=∠EFB=90°
∴EF∥CD
(2) 如图:
EF∥CD,
∴∠2=∠BCD
又∠1=∠2,
∴∠1=∠BCD
∴DG∥BC,
∴∠ACB=∠3=115°.
练习册系列答案
相关题目