题目内容
【题目】如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.
【答案】证明见解析.
【解析】试题分析:首先可判断△ABC是等腰直角三角形,连接CD,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.
试题解析:如图,连接CD.∵BC=AC,∠BCA=90° ∴△ABC是等腰直角三角形 ∵D为AB中点
∴BD=CD=AD,CD平分∠BCA,CD⊥AB ∵∠A+∠ACD=∠ACD+∠FCD=90° ∴∠A=∠FCD
∵∠CDF+∠CDE=90° ∠CDE+∠ADE=90° ∴∠ADE=∠CDF,在△ADE和△CFD中,
∵∠A=∠FCD,AD=CD,∠ADE=∠CDF ∴△ADE≌△CFD(ASA) ∴DE=DF.
【题目】为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上 |
每套服装的价格 | 60元 | 50元 | 40元 |
(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?
(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.