题目内容
【题目】如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.
【答案】
【解析】
在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.
在AB上取BN=BE,连接EN,作PM⊥BC于M.
∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
∵AB=BC,BN=BE,∴AN=EC.
∵∠AEP=90°,∴∠AEB+∠PEC=90°.
∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
故答案为:.
练习册系列答案
相关题目