题目内容
【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为___.
【答案】
【解析】
△CEF与△ABC相似,分两种情况:①若CF:CE=3:4,此时EF∥AB,CD为AB边上的高;②若CE:CF=3:4,由相似三角形角之间的关系,可以推出∠B=∠ECD与∠A=∠FCD,从而得到CD=AD=BD,即D点为AB的中点.
若△CEF与△ABC相似,分两种情况:
①若CF:CE=3:4,
∵AC:BC=3:4,
∴CF:CE=AC:BC,
∴EF∥AB.
连接CD,如图1所示:
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高。
在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,
∴AB= =5,
∴cosA=,
∴AD=ACcosA=3×;
②若CE:CF=3:4,
∵AC:BC=3:4,∠C=∠C,
∵△CEF∽△CAB,
∴∠CEF=∠A.
连接CD,如图2所示:
由折叠性质可知,∠CEF+∠ECD=90°,
又∵∠A+∠B=90°,
∴∠B=∠ECD,
∴BD=CD.
同理可得:∠A=∠FCD,AD=CD,
∴D点为AB的中点,
∴AD=;
故答案为:
练习册系列答案
相关题目
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中正确的是( )
A. 抛物线与x轴的一个交点为(4,0)
B. 函数y=ax2+bx+c的最大值为6
C. 抛物线的对称轴是x=
D. 在对称轴右侧,y随x增大而增大