题目内容
【题目】在2019年某中学举行的冬季阳径运动会上,参加男子跳高的15名运动员的成绩如表所示:
成绩(m) | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
人数 | 1 | 2 | 4 | 3 | 3 | 2 |
这些运动员跳高成绩的中位数和众数分别是( )
A.
B.![]()
C.
D.![]()
【答案】D
【解析】
首先根据这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,判断出这些运动员跳高成绩的中位数即可;然后找出这组数据中出现次数最多的数,则它就是这些运动员跳高成绩的众数,据此解答即可.
解:∵15÷2=7…1,第8名的成绩处于中间位置,
∴男子跳高的15名运动员的成绩处于中间位置的数是1.65m,
∴这些运动员跳高成绩的中位数是1.65m;
∵男子跳高的15名运动员的成绩出现次数最多的是1.60m,
∴这些运动员跳高成绩的众数是1.60m;
综上,可得这些运动员跳高成绩的中位数是1.65m,众数是1.60m.
故选:D.
练习册系列答案
相关题目
【题目】小云在学习过程中遇到一个函数
.下面是小云对其探究的过程,请补充完整:
(1)当
时,对于函数
,即
,当
时,
随
的增大而 ,且
;对于函数
,当
时,
随
的增大而 ,且
;结合上述分析,进一步探究发现,对于函数
,当
时,
随
的增大而 .
(2)当
时,对于函数
,当
时,
与
的几组对应值如下表:
| 0 |
| 1 |
| 2 |
| 3 |
|
| 0 |
|
|
| 1 |
|
|
|
综合上表,进一步探究发现,当
时,
随
的增大而增大.在平面直角坐标系
中,画出当
时的函数
的图象.
![]()
(3)过点(0,m)(
)作平行于
轴的直线
,结合(1)(2)的分析,解决问题:若直线
与函数
的图象有两个交点,则
的最大值是 .