题目内容
【题目】如图,过圆外一点P作⊙O的两条切线,切点分别为A、B,连接AB,在AB、PB、PA上分别取一点D、E、F,使AD=BE,BD=AF,连接DE、DF、EF,则∠EDF等于( )
A.90°﹣∠PB.90°﹣∠PC.180°﹣∠PD.45°﹣∠P
【答案】B
【解析】
由条件可得∠PAB=∠PBA,结合条件可证明△ADF≌△BED,可得到∠AFD=∠EDB,再利用三角形内角和和平角的定义可得∠EDF=∠PAB,在△PAB中可求得∠PAB,则可得出∠EDF的度数.
解:∵PA、PB都是⊙O的切线,
∴PA=PB,即有∠PAB=∠PBA,
在△ADF和△BED中,
,
∴△ADF≌△BED(SAS),
∴∠AFD=∠EDB,
∵∠FAD+∠FDA+∠AFD=180°,∠FDA+∠FDE+∠EDB=180°,
∴∠EDF=∠PAB,
∵∠PAB+∠PBA+∠P=180°,且∠PBA=∠PAB,
∴∠EDF=∠PAB=.
故选:B.
【题目】如图,P是矩形ABCD内部的一定点,M是AB边上一动点,连接MP并延长与矩形ABCD的一边交于点N,连接AN.已知AB=6cm,设A,M两点间的距离为xcm,M,N两点间的距离为y1cm,A,N两点间的距离为y2cm.小欣根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小欣的探究过程,请补充完整;
(1)按照如表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 6.30 | 5.40 |
| 4.22 | 3.13 | 3.25 | 4.52 |
y2/cm | 6.30 | 6.34 | 6.43 | 6.69 | 5.75 | 4.81 | 3.98 |
(2)在同一平面直角坐标系xOy中,描出以补全后的表中各组对应值所对应的点(x,y1),并画出函数y1的图象;
(3)结合函数图象,解决问题:当△AMN为等腰三角形时,AM的长度约为 cm.