题目内容

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求 的值.

【答案】
(1)证明:∵AC平分∠DAB,

∴∠DAC=∠CAB,

∵∠ADC=∠ACB=90°,

∴△ADC∽△ACB,

∴AD:AC=AC:AB,

∴AC2=ABAD


(2)证明:∵E为AB的中点,

∴CE= AB=AE,

∴∠EAC=∠ECA,

∵∠DAC=∠CAB,

∴∠DAC=∠ECA,

∴CE∥AD


(3)解:∵CE∥AD,

∴△AFD∽△CFE,

∴AD:CE=AF:CF,

∵CE= AB,

∴CE= ×6=3,

∵AD=4,


【解析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=ABAD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE= AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得 的值.
【考点精析】本题主要考查了直角三角形斜边上的中线和相似三角形的判定与性质的相关知识点,需要掌握直角三角形斜边上的中线等于斜边的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网