题目内容
【题目】(本题满分10分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.
(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证MN2=DM·EN.
【答案】(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,
∴DP/BQ=AP/AQ.
同理在△ACQ中,EP/CQ=AP/AQ.
∴DP/BQ=EP/CQ.(2)①
②证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG
又∵DG=GF=EF,∴GF2=CF·BG
由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)
∴MN2=DM·EN
【解析】略
练习册系列答案
相关题目