题目内容

【题目】(本题满分10分)(1)如图1,在ABC中,点DEQ分别在ABACBC上,且DEBCAQDE于点P.求证:.

2如图,在ABC中,BAC=90°,正方形DEFG的四个顶点在ABC的边上,连接AGAF分别交DEMN两点.

如图2,若AB=AC=1,直接写出MN的长;

如图3,求证MN2=DM·EN.

【答案】(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,

∴DP/BQ=AP/AQ.

同理在△ACQ中,EP/CQ=AP/AQ.

∴DP/BQ=EP/CQ.(2)

证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG

又∵DG=GF=EF,∴GF2=CF·BG

由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)

∴MN2=DM·EN

【解析】

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网