题目内容
【题目】下列条件中,不能判断△ABC是直角三角形的是( )
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
【答案】B
【解析】
A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.
A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;
B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;
C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;
D、因为a:b:c=1:2:,所以设a=x,b=2x,c=x,则x2+(x)2=(2x)2,故为直角三角形,故D选项不符合题意,
故选B.
【题目】为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
编号 类型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲种电子钟 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙种电子钟 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 计算甲、乙两种电子钟走时误差的平均数;
(2) 计算甲、乙两种电子钟走时误差的方差;
(3) 根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
【题目】小明同学在用描点法画二次函数y=ax2+bx+c图象时,由于粗心,他算错了一个y值,列出了下面表格:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y=ax2+bx+c | … | 5 | 3 | 2 | 3 | 6 | … |
(1)请指出这个错误的y值,并说明理由;
(2)若点M(a,y1),N(a+4,y2)在二次函数y=ax2+bx+c图象上,且a>﹣1,试比较y1与y2的大小.