题目内容

【题目】晨光文具店的某种毛笔每支售价30元,书法纸每本售价10元.为促销制定了两种优惠方案:甲方案,买一支毛笔就送一本书法纸;乙方案,按购买的总金额打8折.某校欲为书法小组购买这种毛笔10支,书法纸xx≥10)本.

1)求甲方案实际付款金额元与x的函数关系式和乙方案实际付款金额元与x的函数关系式;

2)试通过计算为该校提供一种节约费用的购买方案.

【答案】1y=10x+200x≥10);;(2)见解析.

【解析】

(1)甲方案实际付款=10支毛笔的价钱+10本以外练习本的总价钱,把相关数值代入即可求解;乙方案实际付款=(10支毛笔的总价钱+练习本的总价钱)×0.8,把相关数值代入即可求解;
(2)把①②得到的式子比较大小列出式子计算即可.

解:(1)①=30×10+10(x-10)=10x+200x≥10
=(30×10+10x)×0.8=8x+240;
(2)10x+200>8x+240,
解得:x>20;

当练习本超过20本时,选择乙方案;
10x+200=8x+240,
解得:x=20;

当练习本为20本时,两种方案价钱一样;
10x+200<8x+240,
解得:x<20;

当练习本少于20本时,选择甲方案.
答:当练习本超过20本时,选择乙方案;当练习本为20本时,两种方案价钱一样;当练习本少于20本时,选择甲方案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网